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1 Introduction

In Electrical Impedance Tomography (EIT) the distribution of conduectivity inside a
container is sought by applying specified currents (or voltages) at some parts of the
container surface, and performing measurements of the voltage (or current) of some
other parts, The cquations for the electric field then provide relationships between
the conductivity distribution inside the domsin and the measured voltages and cur-
rents. Different types of materials have different conductivity, and the availability of
a conductivity map provides an image of the material distribution in the container.
An efficient reconstruction algorithm based on the Bomndary Element Method
(BEM) was proposed recently [1]. Minimization procedures used for EIT usually
require a large number of calls to the forward problem solver whose efficiency deter-
mines the efficiency of the problem solution. The objective of the present study is
to optimize the forward problem solver. We limit ourselves to the problem of de-
tection of regions of zero conductivity (such as cavities or cracks) inside an imaged
3D object. In this case the forward problem is a Neumann problem for the Laplace
equation. To avoid the need for computational mesh refinement near the electrodes
we modcl these as point singularities on the object surface. If these singularities are
not treated properly considerable errors are introduced in the BEM solution. Here
we propose a solution method, the “singular BEM’, which showed good performance.

2 Forward EIT Problem

Consider a 3D region {1 occupied by material of constant condunetivity ¢ with one
or several embedded objects of zero conductivity. We use N electrodes with centers
X1, ..., Xn located on the boundary of £ to inject current and measure voltages and
one reference electrode xp ;. All potential measurements are made with respect to
the reference electrode. In a number of problems the size of the electrodes is very
small compared with the size of the domain. In this case we introduce the concept of
a point electrode. This concept enables substantial savings in computation time. The
point electrode approximation treats the electrodes as singularities (sinks and sources)
at the boundary of the domain. In this case the electrical potential distribution, ¢,



eenerated by the current, I, injected through a pair of electrodes i and j can be
determined by solving the following problem

V249 = 2ml [6 (x — ) — & (x = 3)], (1)
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where S is the entire surface of the domain of conductivity ¢ consisting of the surface
of the embedded objects and the external boundary of {1 excluding points x;. 6 is the
Dirac delta function. The forward EIT problem is to solve equations (1)-(2).
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3 Decomposition of the Solution

Now, consider the following problem

V2®; = 27w [6 (x — x;) — 6 (X — Xine)] (3)

-0, i=1,.,N, (4)
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where X, is an arbitrary point inside the domain. Because the problem (1)-(2) is
linear, we can decompose ¢* as:
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#el@-0), wj=1..n ®

This simple step is important since it reduces by a factor of N the number of equations
to solve and allows to implement the singular BEM.

4 BEM for Point Electrodes
The problem (3)-(4) can be reformulated via Green’s identity:

an®;(x) = an [G (X, Xq1) — G(x,%:)] + ){? 'I';(}r}% (x,¥)dS. (6)

where a is the solid angle under which the point x sees the rest of the domain, and
G 1z Green's function,

Glx,y)=—|x-y|". (7)
The surface integrals can then be performed by suitably discretizing the boundaries.
Here we use plane triangular elements {5}, m = 1,..., M. Over each sub-domain
S, a linear Lagrangian interpolation of ®; is performed using the values at the nodes
(triangle vertices). The resultant boundary integrals can then be calculated, leading
to a discrete relation between the values of ®; at points x, and the valies of ®; on
the element nodes. Following a collocation approach, by selecting the points x to be
the nodes on S, we obtain the following linear system of equalions:

BS; = an (G (x;,%:) = C(xt,Xine)] s, i=1,.N,  I=1..L (8
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B is a matrix corresponding to the integrations with the derivative of Green’s function
[1]. Note that the concept of point electrodes avoids integration the normal derivative
of ®; (since it is zero) and saves CPU time.

5 Singular BEM

In the absence of current injection, equation (8) becomes B® = 0, which has as
solution ® = const. In discrete form ® = const corresponds to the following vector
P

1
$ =const - U, e e (9)
1
and
B®-0=—BU=0, (10)

Normally, due to the errors of discretization the computed elements of B do not
satisfy exactly (10). So we force the diagonal elements to be

B = —{Bj;l-l-..,-!-B;;_;_l + B_r;+111-|—...-|—B_a,L}, E=1.uk {ll}

where L is the number of collocation points and satisfy (10).
Consider now the non-uniform equation:

B&; =Y, (12)

with an arbitrary right hand side vector Y. Due to Condition (10) this equation has
a solution if and only if the vector Y is orthogonal to the vector U, or

(Y-U)=Yi+Ya+..+ ¥ =0. (13)

Now let us select the collocation points in such a way that the point electrodes
including the reference electrode belong to the collocation point set. In this case the
right hand side of (8) is singular only for x; = x;. Let us define now the vector Y as

follows:

Vi=ar |G (x, %) — G, Xime)], 1 %0 # X5, (14)
Yi=—(Ya+ ..+ Vi1 + Vi +..+¥1), fx=x.

This determines a non-singular vector Y satisfying the orthogonality condition (13)
required for existence of the solution. To make the solution unique we impose the
zero condition at the point Xy ,: (4) and modify the matrix B and the vector Y as

follows:
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(15)
The modified matrix B™< now has a non-zero determinant and the unique solution -
of equation

Bedg, = ylmd. (16)

provides a numerical solution of the problem (3)-(4).

The essence of the singular BEM is a modification of the right hand side vector
(14) by placing the source at a collocation point and the imposition of the condition
of orthogonality, which leads to a unique solution of the equations.

6 Inverse EIT Problem

The inverse EIT problem is to determinc the shapes and locations of the embed-
ded objects using data on measured potentials at all combinations of the injection
clectrodes. To solve this problem we parametrize the position and shape of each
embedded object with several parameters. The total number of parameters (dimen-
sion of the vector of parameters, p) depends on the nmmber of objects and on the
required accuracy in the shape determination. For example, if an embedded object
can be approximated with a sphere it requires 4 parameters (three coordinates of
the sphere center, and the radius); the approximation of the shape with an ellipsoid
requires 9 parameters, etc. To find the p which fits best the measured data, we use
a multidimensional least-square minimization:

Fo)= Y [6(p) - UF] — min, (17)

where U and ¢} (p) are the measured and computed potentials at the kth clectrode
for the i and j injection electrodes. ¢¥(p) is a solution of the forward problem
corresponding to parameter p for the location of the internal boundaries.

For minimizing (17) we used Powell’s method [2] and a genetic algorithm [3]. In
the genetic algarithm the vector of parameters was converted to a bit string by a
standard procedure [4]. :

7  Numerical Results

To check the accuracy-of the singular BEM we performed several tests for domains
bound by a cube or a sphere with various numbers of panels and nodes. We then
obtained analytical solutions using a given distribution of sources and sinks in space
and compared them with those computed using the singular BEM..

The computational surface mesh for a cube was generated with 590 nodes and
1176 panels. Figure 1 shows the comparison node by node of the numerical solution
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Fizure 1: The absolute value of the electric potential on the cube surface created
by two point electrodes. Results obtained using the singular BEM (squares) and the
known analytical solution (solid line).

versus the analytical solution. Note that the relative r.m.s. error for this case is 2.4%.
The solution of the same problem using the standard BEM shows an error of about
10% , due to violation of condition (13) (the norm of the non-orthogonal component
of Y is about 10-15% of the norm of ¥ depending on the locations of the sinks and
sources).

The number of calls of the forward problem solver depends on the dimension
of the vector p and on the selected minimization strategy. Usually calculus-based
minimization algorithms, such as Powell's method, show a high initial convergence
rate (see Figure 2). However, they may not converge {o the global minimum, especially
for large dimensions of p. This is the case for example for the reconstruction of two
spheres. In contrast, the genetic algorithm showed in all our numerical experiments
a lower convergence rate, but a very good convergence Lo the exact solution (Figure
2). Examples of reconstruction of two spheres and an ellipsoid embedded in a cube
are shown in Figure 3.

8 Conclusions

The singular BEM has shown a good accuracy when compared with analytical solu-
tions for cubic and spherical domains. The comparisons showed substantial improve-
ment when compared with the standard BEM. The singular BEM was inearporated
into the EIT algorithm and reconstructions of 3D zero conductivity regions were car-
ried out. The speed up of the computations enabled nse with optimization strategies
such as genetic algorithms which require tens of thousands of calls of the forward
problem solver.

e
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Figure 2: The convergence histories for the Powell and genetic algorithm with the
singular BEM forward problem solver for two spheres and an ellipsoid.
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Figure 3: FExact and converged solution using reconstructions based on the singular
BEM and = single-objective genetic algorithm for 2 spheres and an ellipsoid. The
reconstructed solutions are practically on top of the correct solutions.
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